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The problem considered is that of the steady motion of a series of neutrally 
buoyant, flat-faced, rigid, cylindrical capsules along the axis of a pipeline under 
the influence of a hydraulic pressure gradient. The Navier-Stokes equations are 
non-dimensionalized a.nd expressed in central-difference form. Numerical 
solutions are found by the method of relaxation for Reynolds numbers up to 
20 000 and a close agreement is obtained with readings from a laboratory appara- 
tus for Reynolds numbers up to 2200. 

The flow is examined in detail and the existence of toroidal vortices between 
successive capsules is demonstrated. Their shape is shown to be increasingly 
influenced by inertial forces as the Reynolds number increases, but the overall 
pressure gradient is not greatly dependent on the Reynolds number. 

1. Introduction 
In  recent years, considerable interest has been shown in the flow of capsules 

along pipelines. Several common applications exist, ranging from transportation 
systems to capillary blood flow. The latter case has been found t o  be particularly 
well suited to mathematical analysis because capillaries are very small and 
creeping-flow solutions are sufficient. 

Bloor (1968) approximated blood corpuscles by a series of flat-faced rigid 
cylindrical capsules flowing axially along a pipeline. He solved the linearized 
Navier-Stokes equations numerically and investigated the effect of varying the 
size and spacing of the capsules on the overall pressure gradient. Lew & Fung 
(1969) and Bugliarello & Hsiao (1970) considered a similar model and dealt with 
the streamline pattern in the interspaces between successive capsules. Wang & 
Skalak (1969) treated the corpuscles as a line of spherical capsules, and Chen & 
Skalak (1970) dealt with both oblate and prolate spheroids. These are more 
analogous to the true biconcave shape of the red blood corpuscles. Brenner (1970) 
extended the scope of the analysis to the unsymmetrical case of eccentrically 
positioned, neutrally buoyant spheres. Experimental evidence was obtained by 
Hochmuch & Sutera (1970) to verify a theoretical prediction that a line of spherical 
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caps is stable on the axis of a pipeline if the curved surfaces are facing down- 
stream. More recently, Duda & Vrentras (197 1 a, b)  have derived a new analytical 
solution to the creeping-flow problem. They have also extended the solution to 
include heat-transfer terms to represent the chemical transfers which take place 
through the capillary walls. These papers all deal with fairly close-fitting capsules 
and are complementary to a study by Lighthill (1968), who considered the special 
case of a large distensible corpuscle passing through a distensible capillary of a 
nominally smaller diameter. By using lubrication theory, he predicted a build-up 
of pressure at  the capillary wall just in front of the corpuscles, thus explaining the 
experimentally observed shape of capillaries as large corpuscles pass along them. 

Higher Reynolds number flows have been less extensively considered, but 
Charles (1963) presented a simplified analysis of the motion of single capsules in a 
pipeline with the fluid in laminar or turbulent flow. Kennedy (1966) suggested a 
modification to Charles’s turbulent-flow analysis, and Newton, Redberger & 
Round (1964) presented a more rigorous solution for the laminar-flow case. They 
used a linearized form of the Navier-Stokes equations to obtain a series of 
numerical solutions corresponding to various capsule sizes, shapes and eccen- 
tricities. 

There is a similar problem in two dimensions when flow passes over a corru- 
gated duct, and various attempts have been made to analyse it. The creeping-flow 
case was studied by Weiss & Florsheim (1965), who presented an analytical 
solution and verified experimentally that it was reasonably valid for Reynolds 
numbers below 150. They also predicted and demonstrated the existence of higher 
order vortices in deep narrow cavities. Similar vortices in the corners of rec- 
tangular cavities had previously been predicted by Rayleigh (1920) and subse- 
quently by Moffatt (1964). Burggraf (1966) and Bye (1966) simultaneously 
derived solutions for Reynolds numbers UP to 700, but both found that the 
results of the numerical analysis oscillated strongly when the Reynolds number 
exceeded 400. Runchal & Wolfshtein (1969) attributed this phenomenon to the 
use of central-difference formulae. They demonstrated that solutions can be 
obtained for Reynolds numbers as high as 10 000 if end-difference formulae are 
applied. They used a very coarse mesh size and did not suggest that their results 
would be physically meaningful. However, they predicted that meaningful 
solutions would be obtainable by their method if a sufficiently small mesh size was 
used. 

In  this paper, a series of flat-faced rigid cylindrical capsules is considered as it 
moves at  a steady speed along the axis of it pipeline under the influence of a 
hydraulic pressure gradient. The capsules are neutrally buoyant and regularly 
spaced and are very long in comparison with the width of the annuli between 
them and the pipeline. A numerical solution of the Navier-Stokes equations is 
presented and central-difference formulae are used because the fundamental 
equation does not suffer from the limitation which caused Runchal & Wolfshtein 
to recommend end-difference approximations. Solutions are readily obtained for 
Reynolds numbers up to 2000, and consistent answers are produced even at  
Reynolds numbers as high as 5000. The existence of a large toroidal vortex in the 
interspace between successive capsules is demonstrated a t  all Reynolds numbers. 
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It is usual to expect pipeline laminar flow to become unstable soon after the 
Reynolds number exceeds 2000, but it is possible that, in practice, the presence of 
capsules will help to stabilize laminar flow at higher Reynolds numbers. The flow 
in the annuli will remain laminar until much higher Reynolds numbers because 
the flow width is much less than the pipe radius. If the capsules remain stably 
positioned on the pipeline axis, the flow in the interspaces between them might 
also remain laminar. The annuli would then be analogous to the entry and exit 
regions in laboratory pipelines in which Poiseuille flow can be retained for Rey- 
nolds numbers as high as 50 000. 

Although very unlikely, the laminar capsular flow mechanism, if stable at high 
Reynolds numbers, could prove to be a more efficient method of fluid transport 
than high Reynolds number turbulent flow without capsules present. The feasi- 
bility of this would depend upon the length of capsules required to provide a 
sufficiently stable boundary condition for the interspace flow. 

2. Basic equations 
A system of cylindrical polar co-ordinates, moving with the capsules, is chosen 

so that the tube wall moves with a velocity U in the direction of its axis. The flow 
is steady and two-dimensional relative to these axes and the radial and axial 
distances from the centre of a capsule are denoted by r and z respectively (see 
figure I). 

The Navier-Stokes equations become 

and the continuity equation is v/r+av/ar+au/az = 0. A stream function Y? 
defined by 

is introduced to satisfy the continuity equation. 

quantities by a prime, 
The flow variables are non-dimensionalized so that, denoting non-dimensional 

UI = u p ,  v1 = v / u ,  p' = p/pu2,  

r' = r/R, z' = z/R, Y?' = 'Y/UR2, 

where U is the velocity of the tube relative to the axes, R is the radius of the tube 
and p is the density of the liquid. For convenience, the primes are omitted in the 
remainder of the text. No confusion will result if all variables are assumed to be 
non-dimensional unless otherwise specified. 

4-2 
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FIGURE 1. Notation for the capsule geometry. 

After elimination of the pressure terms from ( 1 )  and (2) and substitution of the 
expressions specified in (3) for u and u, the equation for Y becomes 

I a 3 ~  3 a 2 y  3 ay i a 3 ~  

where Re is a Reynolds number, defined by Re = 2 UR/v. The pressure distribu- 
tion can be determined from (1) and (2). 

Equation (4) is solved within the region between the centre planes of successive 
capsules. It must therefore satisfy the following boundary conditions. On the 
tube wall, where r = 1, Y = constant and aY/ar = 1 ;  on the capsule surfaces, 
Y = aY/ar = aY/ax = 0; on the central axis, Y = 0 and by symmetry, aY/ar = 0. 
The capsules are sufficiently long for the flow in the annuli between them and the 
tube wall to be independent of x except near the capsule faces. In  these annular 
regions, say where 1x1 < 2, the flow is therefore described by 

1 -Rep, - 
8 

(r2-a2)2 [r2-a2- 2r21n (r la)] 
4 In (a) 

+ 
32 

Y = Rep, 

where P, is a constant denoting the local value of aplax, and a is the radius of a 
capsule. Pg is an unknown which is found by considering the equilibrium of the 
fluid. 

In figure 1, T denotes the shear stress exerted by the waI1 on the fluid in the 
positive x direction. The equation of equilibrium of the fluid in the region between 
the centre planes of successive interspaces may be written as 

&L+O 

-&L+l) 
n ( p [ l , g ( L + z ) ] - p [ l ,  -&(I&)]) = 277 1 W d Z ,  (6) 

where L and 1 denote the lengths of a capsule and an interspace respectively. In  
deriving (6), account has been taken of the fact that the capsule imposes no net 
force on the fluid. Also, the flows a t  z =; If: +(L + I) are identical and so the value of 
p[r, &(.L + Z)] -p[r, - +(L + Z)] is independent of r .  The pressure forces are therefore 
simply given by the left-hand side of (6), with r = 1 being chosen for convenience. 



Capsular flow in pipelines 

1.4 r 
53 

" 
1 10 100 1000 10000 

Re 

FIGURE 2.  Typical values of the relaxing factor z and the initial-value multiplier y used t,o 
generate solutions at  high Reynolds numbers from known solutions a t  lower Reynolds 
numbers. a = 0.90, 1 = 1 and h = is-. 

The fall in pressure at  the wall between the two centre planes can be expressed 
as the sum of the fall in the region /z1 < 2 (i.e. 2ZPg) and the falls in the regions 
2 < Iz( < $(L+ I). Inthelatterregions, thepressurefallandalsoT(z) areevaluated 
from the numerical solution, so that, within ( z [  < 2, where ~ ( z )  is a constant 
given by (2/Re) [au/ar],,,, the pressure gradient satisfying the equation of 
equilibrium (6) is 

P, = - 1-a2 1 [A+Nln(a) ] ,  Re 

3. Numerical solution 
Equation (4) is expressed in central-difference form andis solved by the method 

of relaxation, using a KDF 9 computer. As a first guess, Y is chosen to be zero at 
each mesh point in a regular rectangular mesh occupying the region under 
consideration, and the boundary conditions are included in the usual way. 
However, those boundary conditions which are governed by ( 5 )  specify 'Y as a 
function of Po and a. Since P, is unknown, its value is found by an iterative method 
superimposed on the relaxation scheme. Initially the value of N is guessed to be 
zero so that P, = S/Re( 1 - a2) and 'J? = (r2 - a2)2/4( 1 - az), values corresponding to  
the case of an infinitely long capsule. More accurate values for N are derived from 
successive solutions for Y by using (S), so that (4) and ( 5 )  are solved simul- 
taneously. In  practice, it  is more convenient to retain the initially chosen value 
for Y on the tube wall and to allow a to vary to satisfy ( 5 )  when subsequent values 
are obtained for 21;. Only very small changes in the geometry are caused by this 
technique. 

A better initial approximation for the Y distribution throughout the region at  
any Reynolds number can be derived from a known solution at a different Rey- 
nolds number by multiplying each element of the known solution by a constant y . 
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FIGURE 3. The influence of the geometry on the relationship between the overall pressure 
gradient +/az and the Reynolds number. (a) I = 1, L]= 4. (b) L = 4, a = 0.95. ( c )  I = 1, 
a = 0.95. 
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FIGURE 4. A typical pressure distribution along the tube wall. At the coarser mesh size, 
the shape is less well predicted, but the total pressure drop varies only slightly. a = 0.90, 
1 = 1, L = 4 and Re = 2000. ---, h = i5; -, h = &. 

Some typical values of this constant, which would produce good initial guesses 
for solutions a t  double the Reynolds number of various known solutions, are 
shown in figure 2 .  They are found only by trial and error, and depend strongly 
upon the geometry and the mesh size used. 

A series of solutions corresponding to nominal capsule radii of 0.85, 0.90 and 
0.95, capsule lengths of 2,  4, 8, 16 and 106, interspace lengths of 4, 1 and 2,  and 
Reynolds numbers from 1 to 5000 has been derived using mesh sizesof h = &, A, 
& and &. It has been found to be advantageous to over-relax when the Reynolds 
number is low, but essential to under-relax at  high Reynolds numbers, when the 
linear terms no longer dominate in equation (4). An indication of the degree of 
under-relaxing required to prevent divergence is shown in figure 2, in which 2 is 
the largest relaxing factor which will permit convergence. 



4. Results 
A nearly linear relationship has been found between the tube velocity and the 

overall axial pressure gradient required to hold the capsules in position. In  
practice, this is the pressure gradient required to force the capsules along the 
pipeline at  a, steady velocity. Its value increases with the length and diameter of 
the capsules, but decreases as the length of the interspaces increases (see figure 3). 

The consistency of the solutions has been found to be extremely good when the 
smaller mesh sizes are used. For Reynolds numbers below 2000, the maximum 
recorded difference between the overall pressure gradients predicted with mesh 
sizes of & and & is just less than 0.2 %. With a mesh size of &, the difference is 
greater, but there is still less than a 3 yo variation between it and the corre- 
sponding solutionwith a meshsize of & when the Reynolds number reaches 5000. 
Nevertheless, the local axial pressure distribution along the tube wall is not 
predicted accurately when coarse mesh sizes are used because insufficient infor- 
mation is obtained about the flow near the ends of the annuli. Figure 4 shows the 
distribution predicted with mesh sizes of & and for a typical set of values for 
a, I ,  L and Re. With the mesh size of &, equation ( 5 )  is assumed to apply right up 
to the ends of the annuli. The two curves differ considerably, but the approximate 
solution would be quite satisfactory for almost any practical circumstance. 

Considerably less computing store and time is, of course, required for calcula- 
tions using coarser mesh sizes. For example, about 10min of run time and less 
than 100 words of data store are required to compute a solution for a Reynolds 
number of 2000 from a known solution a t  a Reynolds number of 1000 if a mesh size 
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of & is used. A comparable solution usingamesh sizeof & would typicallyrequire 
almost 50min of run time and over 6000 words of data store. 

Since the overall axial pressure gradient is closely predicted even when the flow 
at the ends of the annuli is poorly described, it is deduced that the flow in an inter- 
space is not strongly dependent upon the velocity distribution in the annuli. I n  
particular, it is nearly independent cf the length of the capsules, a property which 
leads t o  great savings in computing time. This independence of the interspace flow 
is explained by the streamline patterns such as those drawnrelative to the capsules 
in figure 5. At all Reynolds numbers, a Y = 0 streamline separates the annulus 
flow from the interspace vortex and there is thus no interchange of fluid between 
the two regions. Next to the tube wall, the flow generating the vortex is far less 
restrained than it is in the annuli and so is not greatly influenced by the conditions 
in the annuli. I n  particular, it is very insensitive to  small changes in the velocity 
profile a t  the ends of the annuli resulting from changes in the pressure gradient. 

At low Reynolds numbers, viscous forces dominate the flow and the streamline 
pattern is almost symmetrical. As the Reynolds number increases, however, 
inertia forces destroy the symmetry and shift the vortex centre towards the 
trailing capsule. This effect resembles that in the two-dimensional case discussed 
by Burggraf (1966) except that there is no evidence of a shift back towards the 
centre of the interspace at higher Reynolds numbers. 

Figures 4 and 5 refer to capsules of different diameters, but they may be 
compared because the pressure distribution curve displays the same features for 
both cases. It is clear from (2) that, a t  the tube wall, the axial pressure gradient 
balances the skin friction and the radial rate of change of the skin friction. Well 
inside an annulus, these values are almost independent of z and so the pressure 
gradient is nearly constant. However, when the fluid enters an interspace, it  is 
less restrained near the wall and the pressure gradient temporarily increases to 
balance the rapid rate of change of the skin friction. A similar but larger increase 
in the pressure gradient occurs just in front of the leading face of each capsule, 
where inertial forces cause a much more rapid rate of change in the skin friction. 
The pressure at the wall reduces just inside the next annulus, where the radial 
velocity distribution adjusts to accommodate the restriction imposed by the 
capsule side. As a consequence of the pressure rise just in front of the capsules, the 
pressure gradient in the annuli reverses at high Reynolds numbers so that the 
state of equilibrium described by (8) is maintained (see figure 7) .  

= 0 joining the corners of successive capsules 
over the entire range of Reynolds numbers. Since the stream function is evaluated 
only at the mesh points, this indicates only that the ‘F = 0 streamline meets the 
capsules within one mesh length of the corners. Nevertheless, a fourth-order 
interpolation scheme is used when plotting the streamlines and so the positioning 
of the line within this grid length should be fairly accurate. Further ‘P = 0 
streamlines indicating the existence of higher order vortices might be expected 
nearer the tube axis when the capsules are closer together (see Bloor 1968), but 
these geometries have not been considered in the present study. Very weak 
secondary vortices analogous to those described by Moffatt (1964) for the two- 
dimensional case are found near the centre of the capsules’ leading faces a t  high 

Figure 5 shows the streamline 
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Reynolds numbers. However, they have been ignored because they are of little 
practical interest and their shape and size is greatly dependent on small numeri- 
cal fluctuations in the iterative procedure used. 

It has been suggested in the introduction that laminar flow might remain stable 
at high Reynolds numbers when capsules are present. A series of results for 
a = 0.95,E = 1 and L = 4 has therefore been derived for Reynolds numbers up to 
20 000, using a mesh size of A. This is too coarse to give accuracy, but it must be 
noted that the overall pressure gradient has been predicted to within 3 % at all 
Reynolds numbers below 5000 when using a far coarser mesh size (A). It is 
therefore considered likely that the overall pressure gradient will have been 
reasonably well predicted a t  a Reynolds number of 20 000 when using the mesh 
size h = &,. Indeed, the oscillations in the solution do not cause this overall value 
to vary by more than about 1 yo. Nevertheless, the point a t  which laminar flow 
will break down can be determined only experimentally. The numerical results 
have therefore been compared with experimental readings obtained from 5 
laboratory apparatus. 

5. Experiments and discussion 
The apparatus consists of a 12 m length of 50 mm bore tubing joining two large 

storage tanks, one of which is I m higher than the other. With the system filled 
with oil, the rate a t  which oil flows under gravity through the pipeline into the 
lower tank is governed by the degree of closure of 5 valve beneath the upper tank. 
A series of pressure transducers, mounted along the pipeline, is used to study the 
pressure history as a line of 47.5 mm diameter capsules passes along a 4 m section 
of very close tolerance bore tubing in the centre of the pipeline. The transducers 
are described in detail by Vardy (1971) and are developed from similar instru- 
ments described by Fox & Henson (1969). A photo-electric cell is used to measure 
the percentage of a light beam passing between a fixed plate and a moving 
diaphragm which is hydraulically connected to the fluid in the pipeline. The cell is 
electrically connected as one arm of a Wheatstone bridge circuit which powers an 
ultraviolet light recorder without amplification. 

Successive capsules are joined by a thin nylon thread which is trapped into flush- 
fitting plugs screwed into the centres of the capsule faces. The thread passes 
through a piece of 1.25 mm O.D. brass tubing, the length of which determines the 
spacing between the capsules. These connexions prevent axial displacement of 
the capsules relative to one another, but impose no other restraint on their motion. 
The capsules are very nearly neutrally buoyant in the oil, and eight small steel 
balls mounted in their walls ensure that they remain symmetrically positioned on 
the axis of the pipeline. Onset of the ‘stick and slip’ mechanism is therefore 
prevented. 

Readings have been obtained for a series of capsule spacings and velocities. 
The overall pressure gradient is in general about 5 % greater than the predicted 
value a t  Reynolds numbers up to 2200 (figures 6, 7) .  This indicates a better 
agreement between theory and practice than is at first apparent because ob- 
servations made during the experimental tests indicated that the measured 
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FIGURE 6. Overall pressure gradients: + , experimental results; -, theoretical (solid line) 
results. L = 4, a = 0.95. (a)  I = *. ( 6 )  1 = 1. (c )  I = 2 .  
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FIGURE 7. Typical measured (solid line) and predicted (broken line) pressure distributions 
along the tube wall. (a)  I = 1, Re = 520. ( 6 )  I = 2 ,  Re = 2196. 

pressure gradient would exceed the theoretically predicted value. The motion of 
the capsules was clearly audible at  all speeds, and so the steel balls must have been 
scraping along the pipeline wall. This also explains the tendency for the errors to 
be greatest at  lower speeds, when the capsules would be touching the pipeline 
more often. 

With the theoretical curve of figure 7 (a )  ‘stretched’ to allow for this effect, the 
measured pressure line in each annulus crosses the predicted curve. This effect has 
been found to occur when the capsules are not quite parallel to the axis of the 
tube because of small variations in the projections of the steel balls above the 
surfaces. Also, strong nonlinearities in the pressure distribution exist locally 
around the balls, where the flow pattern is disturbed. For example, the sharp 
‘valley’ near the origin of the figure coincides exactly with the spacing of the 
balls along the capsules. Figure 7 (b) shows a close agreement with the predicted 
curve, but many peaks exist on the pressure traces. These are largely aresult of the 
capsules hitting the sides of the tube, especially a t  one of the many places where 
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the tube is scratched along its circumference. The apparatus is otherwise relatively 
free from disturbances. 

In an attempt to investigate the stability ofthe mechanism a t  higher Reynolds 
numbers, further readings have been taken using a less viscous oil. Unfortunately, 
no rigorous conclusions can be drawn because the pipeline is too short to allow the 
capsules to reach a steady speed. However, a visual inspection of the flow in a 
transparent section of the pipeline indicates that the flow is still everywhere 
laminar. Reynolds numbers of over 7000 have beenreached, and yet dust particles 
in the oil appear to follow closed streamlines in the interspaces. No evidence of a 
transfer of fluid between the interspaces and the annuli can be found. It is 
unfortunate that no more rigorous results for high Reynolds number operation 
are available, but the work has been undertaken as a part of a postgraduate study 
and it has not been feasible to re-design the apparatus to cover the high Reynolds 
number range. 
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